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Abstract

Spatial unit roots can lead to spurious regression results. We present a brief

overview of the methods developed in Müller and Watson (2024) to test for and

correct for spatial unit roots. We also introduce a suite of Stata commands (-spur-)

implementing these techniques. Our commands exactly replicate results in Müller

and Watson (2024) using the same Chetty et al. (2014) data. We present a brief

practitioner’s guide for applied researchers.

JEL: C21, C22, C52, C87, N0, P0, R12, R15

1 Introduction: Spatial unit roots

Spatial data present challenges for statistical analysis because observations that are close

to each other geographically tend to be correlated - violating the assumption of indepen-

dent and identically distributed (i.i.d.) errors. Valid inference in such settings requires

the use of heteroskedasticity and autocorrelation consistent (HAC) corrections or cluster

standard errors at broader geographic levels (like states).

However, even these correction methods fail when spatial dependence is too strong

(“spatial unit roots”): In such cases, these methods can produce spuriously significant

regression coefficients even for completely independent variables. Müller and Watson
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The Stata code is based on the Matlab code provided by Ulrich Müller and Mark Watson https://

doi.org/10.5281/zenodo.11199509. Our Stata code replicates the results in Müller and Watson (2024)
based on their Matlab code 1:1. Any errors in the Stata code remain our own. We are obliged to Ulrich
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(2024) develop new statistical tests to detect such strong dependence and correct for it,

extending techniques from time series analysis. We present a Stata implementation of

their original Matlab code, along with practical guidelines for applied researchers.

It is well-known in the time series context that when the serial correlation in the

regressors and regression errors is weak (i.e. I(0)), it is sufficient to apply HAC corrections

to account for serial correlation. However, when the serial correlation is strong (i.e. I(1)),

inference fails and OLS produces “spurious regressions” (Granger and Newbold, 1974).

Furthermore, test statistics behave in non-standard ways (Phillips, 1986).

The spatial context is similar (Fingleton, 1999), but as Müller and Watson (2022) dis-

cuss, there are also important differences: First, time series operate in a one-dimensional

space, whereas in the spatial context, we are dealing with two (or three) dimensions.

Second, in the time series context, observations are usually equally spaced (... t − 1,

t, t + 1, ...) whereas in the spatial context, the location of observations on a map can

be substantially different from a uniform distribution on a grid. Third, while there is a

directionality in the time series context (... t−1, t, t+1, ...), in the spatial context, going

east is as natural as going west or north or south. Müller and Watson (2022) propose a

method for constructing confidence intervals that account for many forms of spatial cor-

relation. It uses a projection-type variance estimator, where the projection weights are

spatial correlation principal components (hence called SCPC) from a given “worst case”

benchmark correlation matrix.

Müller and Watson (2022) require stationarity of both regressors and dependent vari-

ables for the large sample validity of their SCPC method. In Müller and Watson (2023),

they present a robust version that can deal with finite-sample settings and corrects for

size distortions when the regressor of interest (x) is nonstationary.1 However, the methods

presented in Müller and Watson (2022) and Müller and Watson (2023) are not dealing

with the case of strong spatial auto-correlation in the outcome of interest (y). Müller

and Watson (2024) introduce diagnostic tests for spatial unit roots and show how trans-

formations of the dependent and independent variables eliminate spurious results in the

presence of strong spatial dependence.

In this article, we provide a Stata version of the programs developed by Müller and

Watson (2024) to test for and correct for spatial unit roots. We also present a practitioner’s

guide for applied researchers trying to detect potential spatial unit roots in their variables

of interest: how to test for non-stationarity or the presence of spatial unit roots, and

what to do in case non-stationarity is detected, or when the presence of spatial unit

roots cannot be rejected. We present the different spatial differencing methods proposed

by Müller and Watson (2024) to correct spatial unit roots, and show that our routines

1The methods developed in these two papers have been implemented in Stata by the authors in their
-scpc- package.
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replicate the results in Müller and Watson (2024) using data from Chetty et al. (2014).

The rest of the article proceeds as follows: Section 2 summarizes and illustrates the

tests developed by Müller and Watson (2024) to diagnose spatial unit roots, as well as their

Stata implementation in the commands spurtest and spurhalflife. Section 3 explains

the spatial differencing techniques they propose to eliminate unit roots, and presents

how they can be applied using the command spurtransform. Section 4 presents a brief

guide to applying these methods to common settings in applied research, and Section 5

demonstrates the functionality of our implementation by replicating results from Müller

and Watson (2024). Section 6 concludes.

2 Testing for spatial unit roots

This section discusses the approaches to inference about the degree of spatial dependence

developed by Müller and Watson (2024). They motivate their analysis of spatial unit

roots by starting from the time series analogue: in time series, the canonical I(1) process

is a Wiener process (also called Brownian motion). Its extension to the (two-dimensional)

spatial case is via a so-called Lévy–Brownian motion. Figure 1 illustrates the similarity

between spurious regressions in the time series context and spatial context: Panel (a)

shows realizations of two independent Gaussian random walks, (b) shows independent

simulated spatial unit root processes over n = 722 U.S. commuting zones. In each case, we

report the R2 and t-statistic from the linear regression (with HAC correction) of the first

on the second process, which show spuriously significant correlation in both cases. Panel

(c) shows two variables from Chetty et al. (2014), their outcome variable (mobility index)

and one regressor (teen labor force participation) which show some visual resemblance

with the unit-root processes in panel (b), thereby highlighting the potential relevance of

strong spatial auto-correlation that needs to be detected and addressed in empirical work.

Specifically, Müller and Watson (2024) develop four diagnostic tests, examing the

following null hypotheses, respectively:

1. H0: Scalar variable y is I(1)

2. H0: Scalar variable y is I(0)

3. H0: Linear regression residuals u are I(1)

4. H0: Linear regression residuals u are I(0)

as well as a method to construct confidence intervals for the spatial half-life of a scalar

variable. All of these tests exploit the different variance-covariance structures implied

respectively by the canonical spatial I(1) and local-to-unity (LTU) models. LTU models

are characterized by weak mean reversion as measured by a parameter c > 0. For small
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(a): Independent time series unit root processes

R2 = 0.33

t = 3.81

(b): Independent spatial unit root processes

R2 = 0.33

t = 4.05

(c): Data from Chetty et al. (2014)

R2 = 0.44

t = 7.89

Figure 1: Spurious correlations with unit roots

Notes. – This figure is adapted from Figure 1 in Müller and Watson (2024); we thank Ulrich Müller and
Mark Watson for kindly granting us permission for this.

values of c, these processes behave nearly like I(1) processes, and for large c, they share

many characteristics of weakly dependent I(0) series. The LTU model thus traces a

continuous spectrum of dependence between the dichotomous I(0) and I(1) cases.

Canonical I(1) model: yl = L(sl), E[L(s)L(r)] =
1

2
(|s|+ |r| − |s− r|)

Canonical LTU model: yl = Jc(sl), E[Jc(s)Jc(r)] = exp [−c|s− r|] /(2c),

where l indexes locations, s, r denote locations in space, |x| =
√
x′x, L(·) is Lévy-Brownian

motion and Jc(·) is the spatial generalization of the Ornstein-Uhlenbeck process with

mean-reversion parameter c > 0. These canonical processes provide asymptotic approxi-

mations for more general models (see Theorem 2 in Müller and Watson, 2024), and their

properties can thus be used to discriminate between I(1) and I(0) processes.

2.1 Low-frequency weighted averages

The basic idea underlying all of the tests is to compare the performance of these two

models in rationalizing the data. Instead of performing tests on the raw data, Müller
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and Watson (2024) build on Müller and Watson (2008) and compute the test statistics

from a fixed number q of weighted averages of the data. Specifically, given a data vector

Y = (y1, . . . , yn)
′, define ΣL as the n×n covariance matrix of Y implied by the canonical

I(1) model (Lévy-Brownian motion L(·)). Further define R as the n × q matrix whose

columns are the eigenvectors of MΣLM corresponding to the q largest eigenvalues, where

M = In − 1(1′1)−11′ is the demeaning matrix, and scaled such that n−1R′R = Iq. Then,

the weighted averages are computed as

Z = R′MY = R′Y

The j-th (j = 1, . . . , q) weighted average is the linear combination of the data with the

j-th largest variance under the canonical I(1) model. As discussed in detail in Müller and

Watson (2019) for the time series case, this choice of weights extracts and summarizes

low-frequency variation in the data.

Basing the tests on these weighted averages is useful in two broad ways:2 First,

summarizing the data in a fixed number of averages yields an asymptotically multivari-

ate (q-dimensional) normal distribution (following from a central limit theorem), which

enables the use of standard inference methods. The covariance matrix of this limiting

distribution is simply

Ω = R′ΣR

where Σ is the covariance matrix induced by the canonical model that asymptotically

approximates the data generating process (see again Theorem 2 in Müller and Watson,

2024). Second, choosing the weights to extract only low-frequency variation makes the

resulting tests robust to misspecification of the high-frequency variation: the accuracy

of the approximations derived from the canonical models in finite samples now does not

depend (much) on the ability of those models to match the high-frequency behavior of

the data generating process.

Choice of q. An obvious practical question is how to choose the number of weighted

averages q. The trade-off involved follows from the previous discussion: a large q increases

the amount of data used in the tests, increasing power, but also makes the tests more

sensitive to high-frequency noise in the data. Müller and Watson (2024) suggest to keep

q between 10 and 20, and use q = 15 in their applications. In our Stata package, all test

commands include the option , q(). Following the previous discussion, we set q(15) as

the default.

Illustration of weighted averages. To aid intuition, we illustrate the construction

of the weighted averages in a simple example. We randomly draw n = 3000 locations

2See Müller and Watson (2019) for a more extensive discussion.
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from a uniform distribution on the unit square, with coordinates sl, l = 1, . . . , n. The

covariance matrix induced by Lévy-Brownian motion for these locations is then given by

ΣL, where the (l, ℓ)-th element is 1
2
(|sl|+ |sℓ| − |sl − sℓ|). From there, it is straightforward

to compute the eigenvectors of MΣLM. The subplots of Figure 2 show the eigenvectors

corresponding to the 1st, 2nd, 3rd, 4th, 10th, 15th, 20th and 50th highest eigenvalues,

respectively, where the color of location l on the map indicates the value of the l-th element

of the respective eigenvector. The “frequency” of the variation clearly increases with the
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Figure 2: Illustration of the weights

order of the eigenvectors, and thus projecting3 the data Y on the first q eigenvectors

extracts the low-frequency variation. This is further illustrated by the subplots of Figure

3: The first two subplots show simulated data for an LBM (unit root) and an LTU

process with very low persistence (c = 10), respectively. The difference in low-frequency

variation is clearly visible. The third subplot shows the weighted averages ZLBM ,ZLTU

resulting from pre-multiplying the two data vectors with the eigenvectors of MΣLM

corresponding to the q = 15 largest eigenvalues. The difference in behavior is very stark:

the LBM process loads heavily on the first few eigenvectors (low frequencies) and then

quickly decays, while the LTU process loads evenly across the spectrum. The two shaded

areas show the range [−
√

Ωj,j,
√

Ωj,j] of the covariance matrices ΩLBM ,ΩLTU implied by

the two processes: by construction, ΩLBM describes the behavior of ZLBM much better

than that of ZLTU , and vice versa. The next sections formalize such comparisons to

discriminate between I(1) and I(0) processes.

3Notice that R′Y = n(R′R)−1R′Y by construction. The j-th element of Z is thus the (scaled)
coefficient of a regression of Y on the j-th column of R.
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Figure 3: Simulated data and weighted averages

2.2 Generic testing procedure

Given the weighted averages Z whose limiting distribution is multivariate normal, infer-

ence boils down to testing hypotheses about its covariance matrix Ω. In all tests, the

hypotheses are of the form

H0 : Ω = Ω0 vs. Ha : Ω = Ωa

Müller and Watson (2024) suggest to use the likelihood ratio test statistic of Z/
√
Z′Z

L(Ωa | Z)
L(Ω0 | Z)

∝ Z′Ω−1
0 Z

Z′Ω−1
a Z

≡ Λ

with critical value CV that solves

Pr(Λ > CV | H0) = α

By the Neyman-Pearson lemma, this is the most powerful level α scale invariant test. In

practice, the critical value is computed by

1. drawing Nrep random q × 1 vectors Ẑ from the distribution N(0,Ω0),

2. computing the test statistic Λ̂ = Ẑ′Ω−1
0 Ẑ/Ẑ′Ω−1

a Ẑ for each draw,

3. setting CV as the empirical 1− α quantile of the resulting distribution of Λ̂.

The test then rejects H0 if Λ > CV .4 All test commands in our package include the

option , nrep(), which sets the sample size Nrep for the Monte Carlo simulation. The

default is nrep(100000).

4P-values are computed as
∑Nrep

i 1[Λ̂i > Λ]/Nrep
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2.3 I(1) test

The I(1) test tests for the presence of a unit root in a scalar variables y, i.e. the I(1)

model against the LTU model. The hypotheses are therefore

H0 : Ω = ΩL = R′ΣLR vs. Ha : Ω = Ω(ca) = R′Σ(ca)R

where ΣL is the covariance matrix implied by the canonical I(1) model and Σ(ca) is

the covariance matrix implied by the LTU model with mean-reversion parameter ca. The

choice of ca determines the power of the test across the alternative hypothesis space c > 0.

No uniformly most powerful test exists, so Müller and Watson (2024) propose setting ca

such that a level 5% test has 50% power, following King (1987). The test statistic,5

following the discussion in Section 2.2, is

LFUR =
Z′Ω−1

L Z

Z′Ω−1(ca)Z

and the test rejects H0 if LFUR is larger than the critical value (computed as described

in Section 2.2).

2.4 I(0) test

Testing the I(0) null hypothesis, i.e. spatial stationarity, is not quite as straightforward:

the LTU model, as discussed in Section 1, is very similar to an I(1) process for small c, and

very similar to an I(0) process for large c. Therefore, to specify an I(0) null hypothesis,

one must take a stance on the value of c that separates the two. Müller and Watson

(2024) propose to set this value to c0.03, defined as the value of c such that the average

pairwise correlation induced by Σ(c) is 0.03.6 They then propose the hypothesis

H0 : Ω = Ω(c), c ≥ c0.03 vs. Ha : Ω = Ω(c) + g2aΩL, ga > 0

where the alternative hypothesis is a mixture of the I(0) and I(1) models, which gets

closer to the I(1) model as ga increases. To construct a test statistic in the form of

Section 2.2, we require simple hypotheses. Müller and Watson (2024) suggest that setting

c = c0.001 under both H0 and Ha and thus computing the test statistic

LFST =
Z′Ω(c0.001)

−1Z

Z′[Ω(c0.001) + g2aΩL]
−1Z

5Müller and Watson (2024) label the statistic LFUR in reference to the Low Frequency Unit Root
statistic in Müller and Watson (2008).

6See Müller and Watson (2024) for details.
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yields a test that works well for a wide range of c ≥ c0.03. The test rejects H0 if LFST is

larger than the critical value (computed as described in Section 2.2, with the modification

that first the critical value is computed for a range of values c ≥ c0.03, and then the highest

of those values is used to compare to the test statistic).

2.5 I(1) and I(0) tests for regression residuals

In many practical applications, the econometrician wants to test the persistence of the

errors of a regression model yl = x′
lβ + ul. With β unknown and its estimates biased

in the presence of unit roots, ul is unobserved and thus the previous tests cannot be

directly applied. Müller and Watson (2024) propose a simple solution for the case where

u is independent of X, which is to condition on X in the construction of the weighted

averages:

ZX = RXY

where RX collects the eigenvectors of MXΣLMX corresponding to the largest q eigenval-

ues, and MX = In−X(X′X)−1X. Then, the LFUR and LFST statistics can be computed

as before, with ZX instead of Z.

2.6 The spurtest command

All four tests described in the previous sections are implemented in the Stata command

spurtest, which has four versions for the four different tests.

Syntax

spurtest i1 varname
[
if

] [
in

] [
, q(#) nrep(#) latlong

]
spurtest i0 varname

[
if

] [
in

] [
, q(#) nrep(#) latlong

]
In each case, varname is the numerical variable to be tested for stationarity.

spurtest i1resid depvar
[
indepvars

] [
if

] [
in

] [
, q(#) nrep(#) latlong

]
spurtest i0resid depvar

[
indepvars

] [
if

] [
in

] [
, q(#) nrep(#) latlong

]
In each case, depvar is the numerical dependent variable, and indepvars are the numerical

independent variables of the regression model (a constant is always included).

For this command (and all other commands in this package) to work, the spatial

coordinates must be stored in the variables s *, where * is a positive integer. This is for

consistency with the scpc command developed by Müller and Watson (2022, 2023), which

we use below. If the option latlong is specified, s 1 is interpreted as latitude and s 2 as

9



longitude, and no other s * variables may be present. If the option is not specified, the p

s * variables present are interpreted as coordinates in p−dimensional Euclidean space.

Options

q(#) specifies the number of weighted averages to be used in the test. The default is

q(15).

nrep(#) specifies the number of Monte Carlo draws to be used to simulate the distribu-

tion of the test statistic. The default is nrep(100000).

latlong specifies that the spatial coordinates are given in latitude (stored in s 1) and

longitude (stored in s 2) (see above).

Stored results

spurtest stores the following in r():

Scalars

r(teststat) Test statistic (LFUR or LFST)

r(p) P-value of the test

r(ha param) Parameter for alternative hypothesis (ca or ga)

Matrices

r(cv) Critical values at 1%, 5%, and 10% levels

2.7 Confidence sets for spatial half-life and the spurhalflife com-

mand

For completeness, we also implement a method proposed in Müller and Watson (2024) to

construct confidence sets for the spatial half-life of a process, that is the spatial distance

at which the correlation in the process is equal to 1/2. In the local-to-unity framework,

this is directly connected to the parameter c, specifically the half-life h is equal to ln 2/c.

Therefore, confidence intervals can be constructed as the sets of values of h for which the

null hypothesis H0 : h0 = h cannot be rejected. For further details we refer the interested

reader to Section 4.4 of Müller and Watson (2024).

Syntax

spurhalflife varname
[
if

] [
in

] [
, q(#) nrep(#) level(#) latlong normdist

]
varname is the numerical variable whose spatial half-life is of interest.

For this command to work, the spatial coordinates must be stored in the variables

s *, where * is a positive integer. (See explanation in Section 2.6.)
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Options

q(#) specifies the number of weighted averages to be used in the test. The default is

q(15).

nrep(#) specifies the number of Monte Carlo draws to be used to simulate the distribu-

tion of the test statistic. The default is nrep(100000).

level(#) specifies the desired confidence level in percent. The default is level(95).

latlong specifies that the spatial coordinates are given in latitude (stored in s 1) and

longitude (stored in s 2) (see above).

normdist specifies that the results are to be returned as fractions of the maximum pairwise

distance in the sample. Otherwise, they are returned in meters (if latlong) or the

units of the original Euclidean coordinates (if not latlong).

Stored results

spurhalflife stores the following in r():

Scalars

r(ci l) Lower bound of confidence interval

r(ci u) Upper bound of confidence interval

r(max dist) Maximum pairwise distance in the sample

3 Correction through spatial differencing and the

spurtransform command

Having tested for and found evidence of the presence of spatial unit roots, the econometri-

cian needs a way to correct for them in order to be able to estimate regression coefficients

consistently. The standard approach in the time series literature is to take first differences

of the data:

yt = yt−1 + ϵt

∆yt = yt − yt−1 = ϵt

which yields a stationary process that can be used in regressions. The equivalent trans-

formation in the spatial context is not obvious: observations in space cannot be ordered

in the way that a time series can, and they are unevenly spaced, so which value to sub-

tract from each observation is not clear. Müller and Watson (2024) propose four possible

transformations, the last of which they find to be the most powerful in their simulations.

The following presents all four and illustrates their effects using the simulated LBM from

Section 2.1.
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Nearest Neighbor (NN) Differences

Perhaps the most obvious differencing procedure would be

y∗l = yl − yℓ(l)

where sℓ(l) is the location nearest to sl. This is equivalent to

Y∗ = HNNY = (In − ĤNN)Y

where ĤNN,lj = 1 if j = ℓ(l) and 0 otherwise.

Isotropic Differences

Instead of taking differences only with respect to the nearest neighbor, another option

would be to subtract the mean of all observations in a neighborhood of radius b:

y∗l = yl − ȳl(b)

where

ȳl(b) =
1

ml(b)

∑
j ̸=l

1[|sl − sj| < b]yj

ml(b) =
∑
j ̸=l

1[|sl − sj| < b]

This is equivalent to

Y∗ = HISOY = (In − ĤISO)Y

where ĤISO,lj = ml(b)
−11[|sl − sj| < b]yj for j ̸= l and 0 for j = l.

Clustered demeaning

A third option is to partition the data into K clusters and subtracting from each ob-

servation the mean within its cluster (or, equivalently, including cluster fixed effects in

the regressions). These clusters could be based on knowledge of the structure of the data

(e.g., states), or constructed through techniques like k-means clustering. The transformed

data is then

y∗l = yl − ȳk(l)
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where

ȳk(l) =
1

mk(l)

∑
j

1[k(j) = k(l)]yj

mk(l) =
∑
j

1[k(j) = k(l)]

and k(l) is the cluster that l belongs to. This is equivalent to

Y∗ = HCLY = (In − ĤCL)Y

where ĤCL,lj = m−1
k(l)1[k(j) = k(l)]yj.

LBM-GLS transformation

The previous three transformations are somewhat ad hoc ways of correcting strong spatial

dependence. Following their characterization of spatial unit root processes as approx-

imated by Lévy-Brownian motion, Müller and Watson (2024) propose a GLS transfor-

mation based on the covariance matrix induced by LBM. Recall that, under LBM, the

demeaned data are distributed as Y ∼ N(0,MΣLM). The standard GLS transform is

then

Y∗ = (MΣLM)−1/2Y

≡ HLBMGLSY ≡ (In − ĤLBMGLS)Y

where (MΣLM)−1/2 is the Moore-Penrose inverse of (MΣLM)1/2. To see how this trans-

formation can be described as “spatial differencing”, it is useful to relate this back to the

time series case: It is easy to show that taking first differences of any evenly spaced time

series is exactly equivalent to a (particular) GLS transformation based on the covariance

matrix of a standard random walk. The LBM-GLS transformation translates this logic

to the multidimensional spatial case, using the LBM covariance matrix. Figure 4 further

illustrates the effects of the transformation.

Figure 4 illustrates all four transformations. The single plot at the top is the “raw”

data used for this illustration, which is the simulated LBM process from Figure 3. The

four columns below show the four described transformations, respectively. Within each

column, the top panel illustrates the transformation for one single data point (in red): the

blue dots are the data points whose weighted values are subtracted from the red point,

with a stronger blue indicating a larger weight. In the NN transformation, only the closest

neighbour is subtracted. In the isotropic and cluster transformations, an unweighted

mean of surrounding observations is subtracted. The LBMGLS transformation subtracts

a weighted mean of all surrounding observations, with weights quickly decaying with
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distance. The middle panel shows the values which are subtracted from the raw data

(ĤY), and the bottom panel shows the transformed data (HY).7
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Figure 4: Differencing transformations

Syntax

spurtransform varlist
[
if

] [
in

]
, prefix(string)

[
transformation(string) radius(#)

clustvar(varname) latlong replace separately
]

varlist is the list of variables to be transformed. The transformed variables will be stored

under the original variables names prefixed with prefix. If varlist contains several vari-

7The cluster transformation uses K = 200 clusters constructed through k-means clustering.
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ables, they are all transformed using the same matrix H, meaning that only observations

where all specified variables are non-missing will be included. To override this behavior,

specify the option separately, or, equivalently, execute the command separately for all

variables.

Options

prefix(string) specifies the prefix for the variable names under which the transformed

data will be stored.

transformation(string) specifies the type of transformation. Must be one of nn, iso,

cluster, lbmgls. Defaults to lbmgls.

radius(#) specifies the radius in metres (if latlong), or in the units of the original

coordinates (if not latlong), which is to be used for isotropic differencing (b in the

notation above). Only allowed with transformation(iso).

clustvar(varname) specifies the variable that is to be used for clustering. Only allowed

with transformation(cluster).

latlong specifies that the spatial coordinates are given in latitude (stored in s 1) and

longitude (stored in s 2) (see above).

replace allows the command to overwrite variables when storing the transformed data.

separately executes the transformation separately for all variables in varlist . This leads

to different results if there are missing observations in some variables, because the

default behavior is to construct the H matrix based only on those observations for

which all variables are non-missing.

4 Practitioner’s guide

How should the Müller-Watson approach be used in practice? Figure 5 summarizes the

key steps in applying the spatial unit root approach.

We first test whether the dependent variable contains a unit root. To this end, we

examine whether we can reject that it is I(0). If so, we test whether we can reject that

it is I(1). If we cannot reject, a unit root is mostly likely present; we need to use the

methods in Müller and Watson (2024), combined with the SCPC approach in Müller and

Watson (2022, 2023). In this case, variables on both sides of the equation need to be

differenced, independent of whether x is I(0) or I(1). If we rejected I(0) but also I(1),

the case is indeterminate; it is arguably wise to difference and report results from using

transformed variables. If we cannot reject the dependent variable being I(0), but we can

reject that it is I(1), we can confidently use standard methods.
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Figure 5: Flow diagram: Steps to apply the spatial unit root approach

Multivariate cases as well as well as instrumental variables (IV) can be handled anal-

ogously. Since the hypothesized relationship involves x and y, we should proceed with

differencing all independent variables. Also, because IV estimation represents a rescaling

of the relationship between y and z via x, we can proceed analogously in this case.8

5 Application: Reproducing the Chetty et al. (2014)

results in Müller and Watson (2024)

To demonstrate that our Stata code works as expected, we reproduce Table 1 in Müller

and Watson (2024) which uses data from Chetty et al. (2014). The respective data comes

in xlsx format and was obtained from the replication package accompanying Müller and

Watson (2024). We keep their variable names 1:1. The key outcome variable is called

“am” (absolute mobility) whereas all other variables are predictors of the potential for

absolute mobility, such as “tlfpr”, the teenage labor force participation rate. “am” and

“tlfpr” are the two variables depicted in Figure 1, panel (c). In what follows we list the

sequence of Stata commands that produces our Table 1.

Our code starts with some preparatory work: reading in the Chetty et al. (2014) data;

defining labels; defining lists of variables:

clear all

mata mata clear

// import variable labels

8We thank Ulrich Müller and Mark Watson for clarifying this point.
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import excel "../example_data/Chetty_Data_Labels.xlsx", sheet("Sheet1") firstrow case(lower) clear

local i 0

foreach v of varlist * {
local lab`++i´ = `v´[1]

}

// import data

import excel "../example_data/Chetty_Data_1.xlsx", sheet("Sheet1") firstrow case(lower) clear

// assign variable labels

local i 0

foreach v of varlist * {
label variable `v´ `"`lab`++i´´"´

}

// drop non-contiguous states

drop if state == "HI"

drop if state == "AK"

// rename lat and lon

rename lat s_1

rename lon s_2

// make list of covariates

local myvars "fracblack racseg segpov25 fraccom15 hipc gini incsh1 tsr tsperc hsdrop scind

fracrel crimer fracsm fracdiv fracmar loctr colpc coltui colgrad manshare chimp tlfpr

migirate migorate fracfor"

After this, we call the different commands in the Stata SPUR suite: spurtest,

spurhalflife and spurtransform, before finally applying the scpc command made

available by Müller and Watson (2023) on their website. The latter apply the proper

standard errors appropriate in the context of spatial auto-correlation on the (transformed)

data.

// loop over variables

foreach var of varlist am `myvars´ {
local label_`var´: variable label `var´

// i1 test

spurtest i1 `var´, latlong

local tab_1_`var´ = `r(p)´

// i0 test

spurtest i0 `var´, latlong

local tab_2_`var´ = `r(p)´

// half-life

spurhalflife `var´, latlong normdist nrep(10000)

local tab_3_`var´ = `r(ci_l)´

local tab_4_`var´ = `r(ci_u)´

// note that "am" (=absolute mobility) is the dependent variable

if "`var´"!="am" {

preserve

// Standardize variables

qui sum am if !missing(am) & !missing(`var´)

qui replace am = (am - `r(mean)´)/`r(sd)´ if !missing(am) & !missing(`var´)

qui sum `var´ if !missing(am) & !missing(`var´)

qui replace `var´ = (`var´ - `r(mean)´)/`r(sd)´ if !missing(am) & !missing(`var´)

17



// Naive OLS

reg am `var´, noconstant vce(cluster state)

local tab_5_`var´ = `e(r2)´

matrix res = r(table)

local tab_6_`var´ = res[1,1]

local tab_7_`var´ = res[5,1]

local tab_8_`var´ = res[6,1]

// Residual I(1) test

spurtest i1resid am `var´, latlong

local tab_9_`var´ = `r(p)´

// Residual I()) test (not in table)

spurtest i0resid am `var´, latlong

// LBMGLS transformation

qui spurtransform am `var´, prefix("h_") latlong replace

// OLS on transformed

qui reg h_am h_`var´, noconstant robust

local tab_10_`var´ = `e(r2)´

scpc, latlong

matrix res = e(scpcstats)

local tab_11_`var´ = res[1,1]

local tab_12_`var´ = res[1,5]

local tab_13_`var´ = res[1,6]

restore

} end of "am" if-condition

} // end loop

We follow the exact same ordering of columns as Müller and Watson (2024) to allow

for comparison of results of their original Matlab code and our Stata code. Our results

are shown in Table 1. Apart from minor differences in the second decimal place, which

are explained by the fact that the methods use simulations based on random numbers,

our code reproduces the results in Müller and Watson (2024) exactly.

Note that in the vast majority of cases, applying the LBM-GLS transformation does

not turn significant results in levels into insignificant ones. While there are occasional

cases like the effect of the manufacturing share or Chinese import growth (significant in

levels, but not after the transformation), where the new 95% confidence interval includes

zero, these are rare. This is true despite the fact that the overwhelming majority of

dependent variables appear to be I(1), exhibiting a strong form of spatial dependence.

6 Conclusion

The need to adjust for spatial dependence in regression inference using spatial data is

well-known. It is routinely addressed through well-developed HAC methods such as Con-

ley (1999) or regional clustering. However, recent econometric advances by Müller and

18



Watson (2024) demonstrate that this may be insufficient when spatial dependence is

strong: analogously to well-established results in time series econometrics, strong spatial

autocorrelation can lead to spuriously significant coefficients in regressions of independent

processes. Diagnosing and correcting for this is therefore important to applied research

that exploits on spatial variation.

Here, we present a new Stata package spur that diagnoses the presence of spatial unit

roots and creates transformed variables that are cleansed of strong spatial dependence,

using the methods developed in Müller and Watson (2024). We demonstrate that our

package can exactly replicate the empirical results in Müller and Watson (2024), and we

provide a guide to applying this new package in applied settings. In follow-up work, we

plan to apply these methods to several influential studies using spatial data to gauge the

magnitude of these issues in practice.
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